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Abstract. Abstract inner automorphisms can be used to promote any category into
a 2-category, and we study two-dimensional limits and colimits in the resulting 2-
categories. Existing connected colimits and limits in the starting category become
two-dimensional colimits and limits under fairly general conditions. Under the same
conditions, colimits in the underlying category can be used to build many notable
two-dimensional colimits such as coequifiers and coinserters. In contrast, disconnected
colimits or genuinely 2-categorical limits such as inserters and equifiers and cotensors
cannot exist unless no nontrivial abstract inner automorphisms exist and the resulting
2-category is locally discrete. We also study briefly when an ordinary functor can be
extended to a 2-functor between the resulting 2-categories.

On Pieter

I, the second named author, worked with Pieter from when I arrived at the University of
Ottawa in 2019 until his passing in 2022. We established (special cases of) the the main
results of this work early in our collaboration, before we decided to put this work on a
back burner and focus on [7]. A week before his death, I received Pieter’s final comments
on our draft of [7], after which I completed that manuscript and then returned to this
one with the current memorial volume in mind: while he never saw the final version, I
hope that it is to his taste, especially since the natural setting for the theory was given
by crossed modules studied in [6] instead of the special case we initially worked on.

I really enjoyed the time I had working with Pieter, and he taught me a lot about
categorical thinking. He was great at explaining things, asked insightful questions, and
was also good company outside of work. I went on occasional bike rides with him and
Phil Scott when most things were closed during the pandemic, seeing a side of them and
of Ottawa that I would have otherwise missed. I remember these bike rides very fondly,
despite the fact that I was mostly struggling to keep up while these two seasoned riders
leisurely chatted away.

1. Introduction

The category of groups can be viewed as a 2-category in a nontrivial way, where 2-
cells ψ → ϕ correspond to elements g of the codomain such that gψ(−)g−1 = ϕ. This
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2-categorical structure is not just a curiosity but arises in useful group-theoretic con-
structions. For instance, the HNN-extension of a group G along two subgroup inclusions
ψ, ϕ : H ⇒ G is often defined in terms of the concrete construction

G⟨t⟩/{tψ(h)t−1 = ϕ(h)|h ∈ H},

but can readily be seen as the universal way of adding a 2-cell ψ → ϕ, in other words, as
the coinserter of ψ and ϕ.

This 2-categorical structure is often viewed as arising from the fact that groups can
be thought of as one-object categories, giving an embedding Grp→ Cat of 1-categories
which we can promote to an embedding of 2-categories by having Grp inherit its 2-
cells from Cat. In this work, we take a different point of view: the 2-cells between
group homomorphisms come from inner automorphisms, i.e. automorphisms induced by
conjugating with a fixed element. In turn, these inner automorphisms can be characterized
abstractly, resulting in a notion applicable to any category.

To see how this works, note first that an element g ∈ G gives us more than just the
function αid : G→ G given by conjugation with g: For any f : G→ H, we get a function
αf : H → H given by conjugation with f(g). Moreover, for any h : H → H ′ the square

H H

H ′ H ′

h

αf

h

αhf

commutes. Abstractly, this can be captured by saying that g induces a natural automor-
phism of the projection G/Grp→ Grp. A theorem by Bergman [2] shows that any such
natural automorphism is induced in this way.

These extended inner automorphisms make sense in any category C, so that one can
define the group Z(A) of them at an object A ∈ C as the group of natural automor-
phisms of the projection A/C → C. This results in the notion of (covariant) isotropy
group studied in [5, 7–9, 12]. The starting point of this work is that such extended inner
automorphisms can be used to promote any category C into a 2-category CZ by defining,
for f, g : A ⇒ B, 2-cells f → g as “extended inner automorphisms that take f to g”,
i.e. as elements α ∈ Z(B) such that αidf = g. This gives another explanation for the
2-category of groups, as G ∼= Z(G) naturally in the group G. In fact, one can do this
construction more generally: all that one needs is a copresheaf G : C→ Grp where G(A)
is thought of as “abstract inner automorphisms of A”, equipped with suitably compatible
maps γA : G(A) → Aut(A) that let elements of G(A) act as automorphisms on A. This
results in the notion of a crossed C-module, studied in the dual case in [6, Section 5].

In this work, we study two-dimensional limits and colimits in 2-categories that arise
in this manner. Our first result, Theorem 3.1 states that any connected colimit in the
underlying category becomes a two-dimensional colimit. Moreover, when the presheaf of
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sets underlying the presheaf of groups is representable, many further pleasant properties
hold as shown in Theorem 3.5: in particular, all limits in the underlying category are
also two-dimensional limits, and if the starting category was finitely cocomplete, one can
build arbitrary coinserters by mimicking the construction of HNN-extensions in Grp. In a
sense, these positive results are sharp, as evidenced by Theorems 3.6,3.7 and Corollary 3.8,
which roughly speaking state that one cannot have more in the way of two-dimensional
(co)limits unless G is trivial. In this way, the two-dimensional (co)limit behavior of Grp
holds in very general conditions. We conclude by discussing briefly when a functorC→ D
extends to a 2-functor CG → DH: in particular, we will show that G extends canonically
to a 2-functor to groups. This also holds for its left adjoint L whenever it exists, so that L
preserves not only ordinary colimits of groups, but also all two-dimensional colimits that
exist in Grp.

2. Background

2.1. Two-dimensional (co)limits. We refer the reader to [10] for general background
on (strict) 2-categorical (co)limits and use this section merely to fix notation and termi-
nology. A diagram in a 2-category C is given by a 2-functor D : J → C. In general, we
require weighted limits, with the weight being given by a 2-functor W : J→ Cat. Given
D and W , the W -weighted limit of D is an object limW D of C whose universal property
is given by isomorphisms

C(A,
W

limD) ∼= [J,Cat](W,C(A,D(−))

that are 2-natural in A. This correspondence is often split into two parts corresponding the
objects and morphisms of C(A, limW D). The one-dimensional universal property states
that maps A → limW D correspond to natural transformations W → C(A,D(−)). We
will stretch the usual one-dimensional terminology here and refer to such a transformation
as a cone on A, or a W -weighted cone if we wish to be more precise. In particular, the
identity on limW D corresponds to a natural transformation W → C(limW D,D(−)) that
we will call the universal cone. The two-dimensional universal property then states that
modifications between transformations W → C(A,D(−)) correspond to 2-cells between
the corresponding maps A → limW D. Strictly speaking, establishing that an object
satisfies both the one- and two-dimensional universal properties is not quite enough to
exhibit it as a weighted limit, as the required isomorphism should be one of categories and
not just a bijection between their sets of objects and hom-sets. However, in this paper
we will only focus on the one-dimensional and two-dimensional universal properties and
omit checks of functoriality as routine.

In the sequel, we will often study whether an ordinary (i.e. 1-categorical) (co)limit in
the underlying 1-category of C is also a 2-categorical (co)limit in C: in such cases the
weight W is assumed to be constant at the terminal category 1 and suppressed from the
notation.
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The situation and notation for weighted colimits is dual, with the weight W : Jop →
Cat now being contravariant, and the colimit (if it exists) denoted by colimW D. Again,
we will speak of (W -weighted) cocones and of the universal cocone.

2.2. Crossed modules and isotropy. In this section we recall some background on
crossed modules and isotropy. We essentially follow the development in [6, Section 5],
except that we will work with the dual notion and call these simply crossed modules
instead crossed C-modules.

2.3. Definition. [Definition 5.2 of [6]] Let C be a category. A crossed module consists
of

• a copresheaf G : C→ Grp

• group homomorphisms γA : G(A)→ Aut(A,A) for each object A of C

such that

1. for each f : A → B in C and α ∈ G(A) we have fγA(α) = γB(G(f)α)f , i.e. the
square

A A

B B

f

γA(α)

f

γB(G(f)α)

commutes.

2. for each α, β ∈ G(A) we have G(γ(α))β = αβα−1 (Peiffer identity).

Crossed modules organize themselves into a 2-category.

2.4. Definition. [Definition 5.6 of [6]] A morphism of crossed modules

(G : C→ Grp, γ)→ (H : D→ Grp, δ)

consists of a functor F : C→ D and of a natural transformation σ : G → H◦F such that
the square

G(A) HF (A)

Aut(A) Aut(FA)

γA

σ

δFA

F

commutes for each A ∈ C. For two parallel morphisms (F, σ) and (G, θ) of crossed
modules, a 2-cell (F, σ) → (G, θ) consists of a natural transformation τ : F → G such
that

θ = (Hτ) ◦ σ
We move to our main example of a crossed module.
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2.5. Definition. Let C be a category and X an object of C. Then the (covariant)
isotropy group of C at X is the group Z(X) of natural automorphisms of the projection
functor PX : X/C→ C.

Explicitly, an automorphism

α = (αf )f :X→A ∈ Z(X) =def Aut(PX : X/C→ C) (1)

consists of an automorphism αf : A→ A for each f : X → A such that the square

X X

A A

f

α1A

f

αf

commutes. (In the terminology of universal algebra, αf extends α1A .) Moreover, the
naturality of αf then amounts to requiring that for each g : A→ B, the square

A A

B B

g

αf

g

αgf

commutes for any g : A→ B.
A morphism x : X → Y induces a homomorphism Z(X) → Z(Y ) as follows: first,

note that that x induces a functor x∗ : Y/C → X/C fitting into a strictly commuting
triangle

Y/C

X/C C

x∗ PY

PX

so that given α ∈ Z(X) we can define Z(x)α by whiskering along x∗, i.e. Z(x)α := αx∗.
In concrete terms, Z(x)α is defined for f : Y → A by (Z(x)α) = αfx. Consequently, Z
is functorial in X. Moreover, there is a canonical comparison map δ : Z(X) → Aut(X)
defined by α 7→ αid .

2.6. Example. We list some known characterizations of isotropy groups of various cat-
egories. Proofs of these results can be found in [3, 7, 8, 11]

• The result mentioned in the introduction states that for a group G, the isotropy
group Z(G) is naturally isomorphic to G.
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• For a monoid, M , the isotropy group Z(M) is naturally isomorphic to the group of
units of M .

• For the category of Abelian groups, the isotropy group functor Z : Ab → Grp
is isomorphic to the constant functor at Z2, corresponding to the automorphisms
x 7→ x and x 7→ −x.

• For 1-categories of categories and groupoids the isotropy group is trivial. In contrast,
for the 1-category of strict monoidal categories and strict monoidal functors, the
isotropy group of a monoidal category coincides with the group of units of the
underlying monoid, i.e. with the group of strictly invertible objects.1.

2.7. Definition. A category C has small isotropy if for each object X of C, the class
of natural automorphisms of the projection X/C → C is in fact a set, so that Z defines
a functor C→ Grp.

As shown in [7, Theorem 2.4], a convenient sufficient condition for a category C to
have small isotropy is given by C having binary coproducts and a small dense subcategory.
In particular, any locally presentable category has small isotropy. Whenever C has small
isotropy, the maps δA : Z(A) → Aut(A) defined by α 7→ αid promote Z into a crossed
C-module.

For an arbitrary crossed module (G : C→ Grp, γ), the maps γ induce maps G(A)→
Z(A), given α ∈ G(A), the corresponding element of Z(A) is defined at f : A → B by
γB(G(f)α). This endows Z with a universal property.

2.8. Proposition. [Essentially proposition 4.11 of [6]] If C has small isotropy, then Z
is terminal in the fiber over C of the forgetful functor sending a crossed modules to its
underlying category.

We know define our main object of study — the 2-category induced by a crossed
module.

2.9. Definition. The (strict) 2-category CG induced by a crossed C-module (G : C →
Grp, γ) has C as its underlying 1-category. Given two parallel morphisms f, g : A ⇒ B
in C, a 2-cell f → g in CG is given by an element α ∈ G(B) such that γB(α) ◦ f = g.

Vertical composition of 2-cells is given by multiplication in G. Given A
f1−→ B

f2−→ C,
α : f1 → g1 and β : f2 → g2, the horizontal composite β ∗ α : f2f1 → g2g1 is defined as
β · G(f2)(α)(= (G(g2)α) · β).

1As an aside, one might have hoped that this would change if thinks of categories and groupoids as
2-categories, and studies “inner autoequivalences” by moving to a two-dimensional version of isotropy.
However, two-dimensional isotropy remains trivial for categories and groupoids in this setting, whereas
for monoidal categories one recovers the 2-group of weakly invertible objects [7]
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2.10. Example.

• The 2-category GrpZ gives the aforementioned 2-category of groups where 2-cells
ψ → ϕ correspond to elements g of the codomain such that gψ(−)g−1 = ϕ.

• For monoids, the 2-category MonZ gives a similar 2-category, where 2-cells ψ → ϕ
correspond to invertible elements g of the codomain such that gψ(−)g−1 = ϕ.

• For the category of Abelian groups, the nontrivial 2-cells in AbZ are of the form
(−1) : f → −f for any homomorphism f .

• If the isotropy group of a category C is trivial, then CZ is just C viewed as a locally
discrete 2-category. Given Proposition 2.8, in this case for any crossed module
(G : C→ Grp, γ) on C, all 2-cells in CG are automorphisms.

One could carry out straightforward but tedious calculations to show that this indeed
results in a strict 2-category. Instead, we rely on [6, Section 5] where this is deduced
more abstractly: in a nutshell, just like an ordinary crossed module of groups induces
(and indeed is equivalent to) a group object in Cat, a crossed module in the sense of
Definition 2.4 can be shown to induce a category object in Cat, i.e. a double category.
This double category turns out to be one coming from a 2-category with further special
properties.

2.11. Definition. [Dual of Definition 5.17 of [6]] A 2-category is right-generated by
contractible loops if every α : f → g can be written uniquely as α = βf , where β has the
identity as its domain, i.e. if every α satisfies

A B

f

g

α = A B B
f

id

cod β

β

for a unique β.

2.12. Theorem. [Theorem 5.18 of [6]] The assignment (G : C→ Grp, γ) 7→ CG extends
to a (strict) 2-functor from crossed modules to 2-categories that is full and faithful on both
1 and 2-cells. Its essential image is given by 2-categories that are locally groupoidal and
right-generated by contractible loops.

2.13. Remark. Another viewpoint on inner automorphisms of a group is that an au-
tomorphism f : G → G is inner iff it is isomorphic to idG in the 2-category of groups.
This works in fact more generally: if one thinks of a crossed C-module structure (G, γ)
as giving an abstract group of structured inner automorphisms, then one could define an
automorphism f : A→ A in C to be inner iff it is isomorphic to idA in CG.
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2.14. Remark. As any category C with small isotropy has a canonical crossed module
given by the isotropy group, one could envision first promoting C into a 2-category CZ
and then applying this construction to each hom-category ad infinitum. However, this
construction is not worth iterating: for n > 2 one can show that in the resulting (n, 1)-
category there is always exactly one n-cell between two parallel n− 1-cells.

3. Two-dimensional (co)limits in 2-categories induced by crossed modules

In this section we study the existence of two-dimensional (co)limits in 2-categories induced
by crossed modules. We begin with the only positive result we know to hold without
further assumptions.

3.1. Theorem. Let (G : C → Grp, γ) be a crossed module. Then all connected colimits
that exist in C are (strict) 2-colimits in CG.

Proof. Let J be a connected category and consider the (1-categorical) colimit (C, (cj)j∈J)
of D : J→ C. To show that it has the required two-dimensional universal property, con-
sider two cocones (bj)j∈J and (b′j)j∈J on an object B and a modification (αj : bj → b′j)j∈J
between them. The two-dimensional universal property states that any such modification
is induced by a unique 2-cell α : b → b′, where b, b′ : C ⇒ B are the canonical maps fac-
torizing the cocones (bj)j∈J and (b′j)j∈J respectively. To show that this holds, note first
that for any f : j → k in J, we have an equality of 2-cells αkbkD(f) = αj as (αj)j∈J
is a modification. As two parallel 2-cells are equal iff the corresponding elements of G
are, this means that αk = αj whenever there is a map between j and k in J. As J is
connected, this implies that αj = αk for all j, k ∈ J, so let us write α for the element of
G(B) that is uniquely determined by this modification. As the cocone on C is jointly epic,
the equations γ(α)bj = b′j imply that γ(α)b = b′, so that α determines a 2-cell b → b′.
Thus the modification (αj : bj → b′j) is induced by a unique 2-cell α : b→ b′ as desired.

The following simple fact will be used repeatedly.

3.2. Lemma. Let (G : C → Grp, γ) be a crossed module and let I : Grp → Cat be the
inclusion. If C has an initial object 0, then there is a 2-natural isomorphism

CG(0,−) ∼= I ◦ G.

Proof. As 0 is initial in C, for any object A the category CG(0, A) has only one object
corresponding the unique 1-cell 0 → A, so that morphisms in CG(0, A) correspond to
its automorphisms. In turn, such automorphisms correspond to elements of G(A) as the
equation required from 2-cells of CG holds vacuously for 0.

Many of our results hold under the assumption that the presheaf of sets underlying
the presheaf of groups is representable. We now give an equivalent characterization of
when this happens.



INNER AUTOMORPHISMS AS 2-CELLS 9

3.3. Theorem. Let (G : C → Grp, γ) be a crossed module and assume that C has an
initial object. Then the following are equivalent:

(i) The tensor Z⊗ 0 of the initial object 0 of C by Z ∈ Cat exists in CG.

(ii) The composite U ◦ G : C → Set is representable, where U : Grp → Set is the
forgetful functor.

Moreover, if C is also cocomplete, then these are equivalent to G having a left adjoint.

Proof. The tensor Z⊗0 is defined by the isomorphism CG(Z⊗0,−) ∼= Cat(Z,CG(0,−)),
which in turn is isomorphic to Cat(Z, I ◦ G(−)) by Lemma 3.2. As these isomorphism
are strictly 2-natural, we can forget the 2-cells and obtain a 1-natural transformation,
which we can then whisker with the 1-functor Ob: Cat→ Set sending a small category
to its set of objects. Moreover, the objects of Cat(Z, I ◦ G(A)) correspond to group
homomorphisms Z→ G(A) which in turn correspond to elements of UG(A). As a result,
we have a natural isomorphism

C(Z⊗ 0,−) ∼= Ob(CG(Z⊗ 0,−)) ∼= Ob(Cat(Z, I ◦ G(−))) ∼= U ◦ G.

This means that (i) implies (ii) as the one-dimensional universal property of Z ⊗ 0 is
exactly the same as the universal property of an object representing U ◦ G.

Let us us now analyze the two-dimensional universal property by considering the mor-
phisms of Cat(Z,G(A)). Given two objects of Cat(Z,G(A)) corresponding to elements
α, β ∈ G(A), a morphism α→ β in Cat(Z,G(A)) is given by an element θ ∈ G(A) satis-
fying θα = βθ. The two-dimensional universal property of Z⊗ 0 asserts that such a θ is
induced by a unique 2-cell between the corresponding 1-cells fα, fβ : Z⊗ 0 ⇒ A in in CG.

With this in mind, let us now show that (ii) implies (i), so let R be an object of C
representing U ◦ G. Let us fix a universal element τ ∈ U ◦ G(R) so that for every A and
α ∈ G(A) there exists a unique fα : R → A in C such that G(fα)τ = α. We now need to
show that, given two maps fα, fβ : R ⇒ A corresponding to elements α, β ∈ G(A) and a
2-cell θ : fα◦!R → fβ◦!R satisfying θα = βθ , then θ already defines a 2-cell fα → fβ. In
other words, we wish to show that γA(θ)◦fα = fβ. As maps out of R are defined uniquely
by where they map τ , to check this we can equivalently compare where the two sides send
τ . On the right hand side, we get G(fβ)τ = β. On the left hand side, we get

G(γA(θ))(G(fα)τ) = G(γA(θ))α = θαθ−1 = β,

where the penultimate equality is the Peiffer identity identity and the last condition is
equivalent to our condition on θ. Thus (ii) indeed implies (i), as any object satisfying the
one-dimensional universal property of Z ⊗ 0 automatically satisfies the two-dimensional
one.

Assume now that C is cocomplete. If G has a left adjoint L, then L(Z) is an object
representing U ◦ G. Conversely, if U ◦ G is representable, the existence of a left adjoint
follows from [3, Theorem 10.4.3], see also [4].
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3.4. Example.

• The isotropy functor Z : Mon → Grp sending a monoid to its invertible elements
has a left adjoint given by the inclusion Grp ↪→Mon.

• The techniques of [8, 11] can be used to show that the isotropy group of a semiring
is given by its group of units. This has a left adjoint given by sending a group to
its group semiring.

• There is a similar adjunction sending a (unital but not necessarily commutative)
ring to its group of units and sending a group to its group ring. More generally,
one can send an algebra over a ring to its group of units with the left adjoint given
by sending a group to its group algebra. However, these adjunctions are not of the
form L ⊣ Z, because ZR−alg is not given by sending a ring to its group of units.
To see why, note that if u is a unit in a ring, then conjugating with u and with −u
gives rise to the same (extended) inner automorphism. In fact, Bergman [2] shows
that the isotropy group of an algebra over a field is given by the group of units of
the algebra modulo the group of units of the field.

From now on, we say that a crossed module (G : C→ Grp, γ) is representable when-
ever the composite U ◦G : C→ Set is representable. Note that if C has finite coproducts,
the representing object is equipped with the structure of a cogroup object, i.e. a group ob-
ject in Cop. We now give our main positive results concerning two-dimensional (co)limits
in sCG.

3.5. Theorem. Let (G : C→ Grp, γ) be a representable crossed module. Then

(i) All limits in C are 2-limits in CG.

(ii) If C is finitely cocomplete, then CG has coinserters, coequifiers and coidentifiers.

(iii) If C is cocomplete, then CG has all tensors by a monoid.

Proof. (i) Given a diagram D : J → C and a limit (L, (lj)j∈J) of D in C, we need to
show that L satisfies the required two-dimensional universal property in CG. That is,
given two maps h, k : A⇒ L and 2-cells αj : ljh→ ljk satisfying

D(f)αj = αk for every f : j → k in J (∗)

we need to show that there is a unique 2-cell α : h→ k such that αj = ljα for each j ∈ J.
Unwinding the definition of CG, we have elements αj ∈ G(D(j)) such that γ(αj)ljh = ljk
for every j ∈ J and GD(f)αj = αk for every f : j → k in J. As U ◦ G is representable, G
is continuous and hence there exists a unique α ∈ G(L) such that G(lj)α = αj for each j.
It remains to check that α defines a 2-cell h → k, i.e. that γ(α)h = k. But this follows
since, for any j we have

ljγ(α)h = γ(αj)ljh = ljk
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by (∗).
(ii) Let (R, τ ∈ G(R)) be a representation of U ◦ G. To construct the coinserter of

f, g : A ⇒ B, we mimic the construction in Grp. We first form the coproduct B + R,
which intuitively speaking adds an inner automorphism to B freely. We then take a
quotient to force this inner automorphism to become a 2-cell between the projections
of f and g to the quotient. More formally, let c : B + R → C be the coequalizer of
γ(G(iR)τ)iBf, iBg : A ⇒ B + R. Denote G(ciR)τ ∈ G(C) by α. Now α defines a 2-cell
ciBf → ciBg since

γ(α)ciBf = γ(G(ciR)τ)ciBf = cγ(G(iR)τ)iBf = ciBg.

We claim that (C, α) is the coinserter of f and g. To check the one-dimensional universal
property, consider an arbitrary k : B → D with β ∈ G(D) defining a 2-cell kf → kg. The
one-dimensional universal property states that any such k factors uniquely through the
canonical map c ◦ iBB → C, say via q : C → D, and that the 2-cell β : kf → kg satisfies
β = qα.

To prove this, let h : R→ D be the unique map such that G(h)τ = β. Then [k, h] : B+
R satisfies

[k, h]γ(G(iR)τ)iBf = γ(G(h)τ)[k, h]iBf = γ(β)kf = kg = [k, h]iBg

and hence factors uniquely through c via q : C → X. By construction, G(q)α = β and
k = qciB, and clearly q is uniquely determined by these equations.

To show that (C, α) has the appropriate two-dimensional universal property, consider
arbitrary maps q, r : C → D and β ∈ G(D) defining a 2-cell qciB → rciB such that

(βg)(qα) = (rα)(βg) (∗)

The two-dimensional universal property states that any such 2-cell β is induced by a
unique 2-cell q → r. Thus it suffices to show that β ∈ G(D) defines a 2-cell q → r, i.e.
that γ(β)q = r. As c : B + R → C is epic, it suffices to show that γ(β)qc = rc, which
in turn can be checked by precomposing with iB and iR. For iB this follows from the
assumption that β defines a 2-cell qciB → rciB. For iR, we wish to show that

βidqciR = rciR. (∗∗)

As maps out of R are determined by where they send τ ∈ G(R), let us compute it for
both sides of (∗∗). Recall that α = G(ciR)τ , so that left side sends τ to G(γ(β))G(q)α =
β(G(q)α)β−1 by the Peiffer identity. The right hand side sends τ to G(r)α. Thus (∗∗) is
equivalent to

β(G(q)α) = (G(r)α)β

which in turn follows from (∗), as desired.
To find the coequifier of α, β : f ⇒ g where f, g : A ⇒ B, consider the two maps

from the representing object R that correspond to α and β, and take their coequalizer
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c : B → C. By construction, cα = cβ, so let us show that C is universal as such. Indeed,
if d : B → D satisfies dα = dβ, then d factors uniquely through the coequalizer. To show
the two-dimensional universal property, consider h, k : C ⇒ D and an arbitrary 2-cell
θ : hc→ kc. The two-dimensional universal property states that θ is induced by a unique
2-cell h→ k. Now, θ ∈ G(D) satisfies γ(θ)hc = kc, so that γ(θ)h = k as c is epic. Thus θ
defines a 2-cell h→ k as desired, and is clearly unique as such.

The coidentifier of α : f → g where f, g : A⇒ B is constructed by taking the coequal-
izer of the two maps R→ D that correspond to α, 0 ∈ Z(B). The proof of the universal
property is similar to the case of a coequifier.

For (iii), we will first construct the tensor G⊗B when G is a free group on some set X.
First, let (R, τ) represent U◦G, and form the coproduct B+

∐
x∈X R. Write τx for the x-th

inclusion of τ (i.e. the element G(ix)τ ∈ G(B+
∐

x∈X R)), and let c : B+
∐

x∈X R→ G⊗B
denote the (wide) coequalizer of iB with γ(τx)iB for every x ∈ X. Writing αx for the image
of τx under the projection to C, we have γ(αx)ciB = cγ(τx)iB = ciB, so each αx defines an
endo-2-cell on ciB : B → G⊗B, and hence we have a functor G→ CG(B,G⊗B). Let us
now show that it is universal as such. For the one-dimensional universal property, we need
to show that for any object C of C, any functor G→ CG(B,C) factors via the canonical
one G → CG(B,G ⊗ B) through a unique 1-cell g : G ⊗ B → C. As G is free, any such
functor is given by a choice of a morphism k : B → C and 2-cells βx : k → k for x ∈ X.
Now, by the universal property of B +

∐
x∈X R there is a unique map f : B +

∐
x∈X R

such that fiB = k and G(f)τx = βx. Now

fγ(τx)iB = γ(βx)fiB = γ(βx)k = k = fiB (∗)

so that f factors uniquely via g : G ⊗ B → C. Now, g satisfies gciB = k and gαx = βx,
and clearly g is unique as such.

For the two-dimensional universal property, consider two maps f, g : G⊗ B → C and
a 2-cell β : fciB → gciB satisfying

(β)(fαx) = (gαx)β.

The two-dimensional universal property states that any such 2-cell is induced by a unique
2-cell f → g. The only possible choice for such a 2-cell is given by β ∈ G(C), so it
is enough to show that β defines a 2-cell f → g. As c is epic it suffices to show that
γ(β)fc = γ(β)gc. It remains to show that this equation is true when precomposed by any
of the summands of B +

∐
x∈X R. For iB this follows from the assumption that β defines

a 2-cell fciB → gciB. For x ∈ X, it suffices to compute the image of αx:

G(γ(β))G(f)αx = β(G(f)αx)β
−1

where the first equation uses the Peiffer identity and the second comes from (∗).
Now, an arbitrary group G can be given as a coequalizer, and in particular, as a

connected colimit (in Grp) of free groups. Moreover, the inclusion Grp→ Cat preserves
connected colimits. As (−)⊗ B is cocontinuous in the group G, the tensor G⊗ B hence
exists due to CG having connected colimits by Theorem 3.1.
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Finally, as any 2-cell in CG is invertible, for any monoidM any functorM → CG(A,B)
factors uniquely via the group G obtained by universally adding inverses to elements of
M , so that M ⊗B is isomorphic to G⊗B.

For (i), note that the one-dimensional universal property is known to imply the two-
dimensional one if the 2-category in question has cotensors by the walking arrow category
2. However, we will see that this particular limit cannot exist unless G is trivial, so our
result does not follow from this standard fact. For (ii), note that our construction of
the coinserter mimics the usual construction of HNN-extensions in Grp. Curiously, the
construction uses coproducts in C to construct a strict 2-colimit in CG, despite the fact
that coproducts in C rarely satisfy the two-dimensional universal property in CG, as we
will see.

For (iii), note that the existence of tensors is known to follow from coproducts, coin-
serters and coequifiers [10, Dual of Proposition 4.4.]. However, the coproducts in C do not
in general satisfy the two-dimensional universal property in CG, so another proof strategy
is required. In fact, 2-categorical coproducts (and many other (co)limits) cannot exist in
CG unless G is trivial.

3.6. Theorem. [Obstructions for colimits] Let (G : C → Grp, γ) be a crossed module
where C has an initial object 0. Then the following are equivalent:

(i) G is trivial, i.e. each G(A) is the trivial group.

(ii) The coproduct 0 + 0 ∼= 0 is a 2-coproduct in CG.

(iii) The initial object of C is 2-initial in CG.

(iv) CG has tensors by some fixed category D that is not a monoid.

Proof. If G(A) = 0 for all A in C, then CG is locally discrete so (ii)-(iv) hold trivially.
“(ii)⇒(i)”: If 0 + 0 ∼= 0 is a two-dimensional coproduct, then Lemma 3.2 implies that

I ◦ G(−) ∼= CG(0,−) ∼= CG(0 + 0,−) ∼= CG(0,−)×CG(0,−) ∼= I ◦ G(−)× I ◦ G(−).

Moreover, this isomorphism is the diagonal map as it is induced by the isomorphism
0 ∼= 0 + 0, forcing G to be trivial.

“(iii)⇒(i)”: If 0 is 2-initial, then by Lemma 3.2 we have I ◦ G(−) ∼= CG(0,−) ∼= ∆1,
proving the claim.

“(iv)⇒(i)”: the tensor of an object A with the empty category 0, if it were to exist,
would be an object 0 ⊗ A such that CG(0 ⊗ A,−) ∼= Cat(0,CG(A,−)) ∼= ∆1, i.e. a
2-initial object, so the claim follows from (iii)⇒(i).

Let D be a small category with more than one object and assume that the tensor
D ⊗ A of A with D exists, and consider the constant functor ∆(id) : D → CG(A,A)
at idA. Pick any two α, β ∈ G(A), and define for each object of D a 2-cell out of
idA by picking α : idA → γ(α), β : idA → γ(β) for two distinct objects and the identity
for everything else: there is a unique functor F : D → CG(A,A) for which this defines
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a natural transformation ∆(id) → F . By the two-dimensional universal property of
D ⊗ A, this natural transformation has to be induced by a unique 2-cell between the
maps D ⊗ A → A corresponding to ∆(id) and F , so that in particular we must have
α = β, so that G(A) = 0.

The implication “(ii)⇒(i)” above can be readily strengthened to show more specifically
that G(C) = 0 whenever A+B is a two-dimensional coproduct in CG and there are maps
A → C ← B: just consider arbitrary two elements of G(C) and let one act on the map
from A and the other on the map from B. Consequently, a two-dimensional coproduct
can only exist in CG in the trivial case when its two-dimensional universal property holds
trivially. Note also that the obstructions above really come from the two-dimensional
properties, and hence these hold even if one worked with bicategorical colimit notions
replacing [J,Cat] with the category of pseudofunctors, pseudonatural transformations
and modifications, and required that the (co)limit represents the appropriate functor
only up to pseudonatural equivalence rather than up to 2-natural isomorphism.

While all limits of C become 2-limits in CG when G is representable, we now show
that there are hardly any genuinely 2-categorical limits in CG.

3.7. Theorem. [A general obstructions for limits] Let (G : C → Grp, γ) be a crossed
module where C has an initial object. Let J be a locally discrete 2-category, W : J→ Cat
a weight and D : J → C be a diagram in C. If the weighted limit limW D exists in CG,
then the 2-cells appearing in every W -weighted cone for D are trivial.

In this case, the weighted two-dimensional limit limW D in CG can be equivalently
described as the limit limΠ0W D in C, where Π0 : Cat → Set is the functor sending a
category to its connected components. Hence, all existing weighted limits in CG where the
indexing shape is a mere category can be expressed as conical limits in C.

Proof. Let us build a trivial cone on 0 by defining a natural transformation W →
CG(0, D(−)) whose j-th component for j ∈ J is given by the constant functor W (j) →
CG(0, D(j)) on the unique object of CG(0, D(j)). As J has no nontrivial 2-cells, this is a 2-
natural transformation and hence defines a trivial cone on 0. If limW D exists, this trivial
cone must factor via the universal one by a map 0 → limW D. As two 2-cells between
maps into an object A are equal iff the corresponding elements of G(A) are equal, the fact
that the trivial cone factors via the universal one implies that all the 2-cells appearing in
the universal cone and hence in every cone must also be trivial.

Consequently, for every object A, every natural transformation W → CG(A,D(−))
factors via ∆ ◦C(A,D(−)) where ∆: Set→ Cat promotes a set into a discrete category.
As ∆ is the right adjoint to Π0, 2-natural transformations W → CG(A,D(−)) thus
correspond to ordinary natural transformations Π0 ◦W → C(A,D(−)) which are Set-
valued functors. Consequently, the universal property satisfied by limW D is that of
limΠ0W D, which in turn can be expressed as a conical limit as those are sufficient for
ordinary (i.e. Set-enriched) categories.
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3.8. Corollary. [Specific obstructions to limits] Let (G : C → Grp, γ) be a crossed
module where C has an initial object. If G(A) is nontrivial, then the following limits
cannot exist in CG:

(i) the cotensor of A by 2

(ii) lax limits of arrows into A

(iii) comma objects of maps X → A← Y

(iv) inserters of two maps X ⇒ A

(v) equifiers of distinct parallel 2-cells between maps into A.

Proof. (i)-(iv) follow from Theorem 3.7 by using any non-zero element of G(A) to exhibit
a cone with a nontrivial 2-cell. For instance, to rule out the comma object of

f : X −→ A←− Y : g,

pick a non-zero α ∈ G(A) and consider the diagram

0 Y

X A

g

f

α

displaying a cone with a nontrivial 2-cell. For (v), we prove the contrapositive. Consider
any two α, β ∈ G(A) and the corresponding endo-2-cells on 0→ A and take their equifier
E → 0. As two 2-cells are equal iff the corresponding elements of G(A) are equal, the
existence of this equifier implies that α = β.

Again, our negative results on limits hold even if one worked with bicategorical limits.
While our prior theory applies generally to all crossed modules, we record one specific

result concerning isotropy. We rely on the characterization from [8] which we’ll recall next
up to a suitable precision. Let C be the category of models of a single-sorted algebraic
theory. Given an object M of C, we write M⟨x⟩ for the coproduct of M with the free
model on one generator, and more generally M⟨x1, . . . xk⟩ for the coproduct of M with
the free model on k generators. As the notation suggests, we think of M⟨x⟩ as the result
of adjoining an indeterminate x to C freely, so that elements ofM⟨x⟩ correspond to terms
built fromM with one free variable, or rather, to equivalence classes of such terms modulo
the theory. Given two terms t(x), s(x) ∈ M⟨x⟩, the process (t, s) 7→ t[s/x] = t(s(x)) of
substituting s for x in t results in a monoid structure on the (underlying set of) M⟨x⟩,
which we call the substitution monoid.

The neutral element of the substitution monoid is given by the term x (or rather, its
equivalence class modulo the equations of the theory), and a term is invertible if it is
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invertible in the substitution monoid. A term t ∈ M⟨x⟩ is said to commute generically
with the k-ary operation f if the terms t[f(x1, . . . xk)/x] and f(t[x1/x], . . . t[xk/x]) are
equal as elements of M⟨x1, . . . , xk⟩.

Now, the main result of [8] states2 that the isotropy group of an object M of an
algebraic theory is naturally isomorphic with the group of invertible elements of the sub-
stitution monoid M⟨x⟩ that commute generically with all function symbols of the theory.

3.9. Theorem. If C is the category of models of an algebraic theory with a finite signa-
ture, then Z preserves filtered colimits. Thus if Z is representable, the representing object
is finitely presentable.

Proof. Recall first that a M model of an algebraic theory is finitely presentable iff
hom(M,−) preserves filtered colimits, see e.g. [1, Proposition 13.26]. This takes care of
the second claim, and will also be used for the first claim.

We prove the first claim by analyzing three functors: (i) the functor S : C → Mon
sending a model M to the substitution monoid M⟨x⟩, (ii) the subfunctor P of it sending
a M the elements of M⟨x⟩ that commute generically with all function symbols of the
theory, and (iii) the functor I : Mon→ Grp sending a monoid to its group of invertible
elements.

Now, the aforementioned characterization states that ZC is isomorphic to IP , so it
suffices to prove that this composite preserves filtered colimits. Moreover, I is isomorphic
to Mon(Z,−) and Z is a finitely presented monoid, so that I preserves filtered colimits.

We now show that S preserves filtered colimits. Indeed, let D : J → C be a filtered
diagram, and consider the canonical comparison colimSD → S(colimD) map in Mon.
To prove that it is an isomorphism in Mon, it suffices to prove that the underlying
function is an isomorphism in Set. As the forgetful functor U : Mon → Set to set
is represented by N which is finitely presentable, it suffices to prove that the canonical
comparison colimUSD → US(colimD) is an isomorphism. In turn, as US(M) ∼= M⟨x⟩
naturally in M it is sufficient to show that the endofunctor on C defined by M 7→ ⟨x⟩
preserves filtered colimits, but this is true as colimits commute with colimits.

We conclude by showing that P ↪→ S preserves filtered colimits. Now, the canonical
comparison map colimPD → P colimD fits into a commutative diagram

colimPD P colimD

colimSD S colimD∼=

and hence it is monic and thus injective. To show that it is surjective, we invert the

2To be precise, [8] only states its result for the category of finitely presentable models: however, the
same characterization holds for all models [11, Corollary 2.3.3]
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isomorphism above and consider the commuting triangle

colimPD P colimD

colimSD

in order to rely on the concrete description of filtered colimits as quotients of the disjoint
product. Then elements of colimSD are equivalence classes of terms that appear at some
stage SD(j): elements of colimPD ↪→ colimSD then are given by terms that commute
generically with all function symbols of the theory already at some stage SD(j), whereas
colimPD ↪→ colimSD consists of those terms that commute generically with all function
symbols of the theory at the colimit stage i.e. after passing to equivalence classes. Now,
if such a term commutes generically with a given operation of the theory, it has to do
so at some stage j ∈ J. As our theory can be given by finitely many operations, a
term commutes generically with all operations of the theory iff it commutes generically
with this finite set of them. As the diagram is filtered, we may then first find for each
of these finitely many operations a stage ji ∈ J at which the term commutes with the
i-th operation, and then find a stage j ∈ J above all of these. This shows that a term
in colimPD → colimSD already has to commute generically with all operations of the
theory at some stage j ∈ J, i.e. that it is already in colimPD ↪→ colimSD, as desired.

Informally, the representing object can be then thought of as a “a model freely gener-
ated with an inner automorphism”. Finding an explicit finite presentation for this object
can be insightful, as it would give a “universal term” representing inner automorphisms in
that theory just like the term gxg−1 does for groups. We leave open the question of finding
such an explicit finite presentation. Another potentially interesting further avenue is the
following: in some cases, instead of a “universal term” there seems to be a family of terms
that capture all possible types of an inner automorphism (for instance, the results of [7]
seem to suggest that this is the for racks and quandles). Do such situations correspond
to the case where Z is familially representable? If so, is there a version of Theorem 3.3
capturing familial representability of Z in terms of the 2-category CZ?

Many of the results in this section, most notably Theorems 3.1 and 3.5(i) do not
invoke inverses in the groups G at all, and hence we expect that these results would go
through even if G was a copresheaf of monoids. Moreover, it seems that many of the other
results that do invoke inverses and in particular the Peiffer identity could be written in an
equivalent form not invoking inverses by systematically replacing equations of the form
gxg−1 = y with the equivalent gx = yg. However, achieving such additional generality
would come at a cost as we would have had to first develop a monoid-version of crossed
modules instead of referring to results from [6, Section 5] in Section 2, and for relatively
little gain: for us, the main crossed modules of interest come from isotropy, and the
passage from isotropy groups to isotropy monoids has been studied relatively little as it
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seems that (extended) inner endomorphisms are less well behaved and less interesting
than inner automorphisms, see e.g. [2].

4. Extending functors to 2-functors

While Z can be used to promote any locally small category (with small isotropy) into a
(locally small) 2-category CZ , this construction is not functorial in C. As the functor
discussed in Theorem 2.12 is full and faithful on 1 and 2-cells, we can view this theorem
as characterizing exactly the further data required to make an ordinary functor C → D
into a 2-functor CZ → DZ , and similarly for natural transformations between them.

While not directly related to the earlier results on (co)limits in 2-categories of the form
CG, this section is also motivated by understanding such 2-categories, this time in terms
of functors between them. This section arose from studying in further detail when an
ordinary functor C→ D can be promoted into a 2-functor CZ → DZ , whether uniquely
or at least canonically. The first two results of this section stem from the observation
that such a canonical extension always exists for the functor Z : C → Grp and its left
adjoint if it exists. However, this holds in fact more generally: for any crossed module
we have a canonical extension of G : C → Grp to a 2-functor CG → GrpZ . Moreover,
when G has a left adjoint, the adjunction extends canonically to a 2-adjunction. We then
conclude by exhibiting a class of functors that is closed under composition and for which
the extension from C→ D to CZ → DZ is unique.

4.1. Theorem. For any crossed module (G : C→ Grp, γ), the functor G extends canon-
ically to a 2-functor CG → GrpZ .

Proof. The canonical isomorphism idGrp
∼= ZGrp gives rise to an isomorphism σ : G →

ZG. For an arbitrary A ∈ C, consider the square

G(A) ZG(A)

Aut(A) Aut(G(A))

γ

σ

δ

ZGrp

The path via the top right corner sends α ∈ G(X) to the inner automorphism α◦−◦α−1,
whereas the path via the bottom left corner sends α to Z(γ(α)). These two agree by
the Peiffer identity, giving us a morphism of crossed modules and hence a 2-functor by
Theorem 2.12.

4.2. Example. In general, this functor is not full on 2-cells: for instance, in AbZ there
is a unique 2-cell between f and −f , and no other non-identity 2-cells. However, the
functor ZAb is constant at Z2, so that between ZAb(f) and ZAb(g) there are always two
2-cells for any parallel f and g.
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4.3. Theorem. Let (G : C→ Grp, γ) be a crossed module for which the functor G has a
left adjoint L. Then the adjunction L ⊣ G extends canonically to a strict 2-adjunction. In
particular, for this extension G preserves all two-dimensional limits that exist in C and L
preserves all two-dimensional colimits in Grp.

Proof. G extends canonically to a 2-functor by Theorem 4.1. Let us show that the left
adjoint L also extends canonically to a 2-functor. Composing the canonical isomorphism
τ : Z ∼= idGrp with the unit η : idGrp → G ◦ L gives a natural transformation Z → G ◦ L.
For a group H, consider the square

Z(H) ∼= H GL(H)

Aut(H) Aut(LH)

δ

η

γ

L

Going via the bottom left corner sends α ∈ Z(H) to L(αid) : LH → LH and going via
the top right corner sends α to γLHηHτH(α) : LH → LH. By adjointness, it suffices to
compare the corresponding morphisms H → GL(H). Saying that these are equal amounts
to claiming that boundary of

H

GL(H)

H

GL(H)

GL(H)

GL(H)

ηH

αid

ηH

ηH

GL(αid)

ηH

αηH

G(γ(ηHτH(α)))

(i)

(ii)

(iii)

commutes, which will follow once we show that the regions inside of it commute. Region
(i) commutes by naturality of η and (ii) by naturality of α. Let us consider region (iii):
the top path first sends h ∈ H to ηH(h) and then conjugates it with ηHτH(α), resulting in
(ηHτH(α))ηH(g)(ηHτH(α))

−1, whereas the bottom path sends h to G(γ(ηHτH(α)))ηH(h).
These two are equal by the Peiffer identity, so that we can promote L into a morphism of
crossed modules and hence to a 2-functor by Theorem 2.12.

It remains to check that the unit and counit are 2-natural, which by Theorem 2.12
amounts to checking that they are 2-cells between maps of crossed modules. The 2-
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naturality of the unit η : idGrp → GL follows from the commutativity of

Z Z

ZGL

ZGL

idGrp GL

id

Zη

τ

τ id

η τ−1

Zη

and the counit ϵ : LG → idC is 2-natural since

G ZG G

GLG

G

id

τ−1 τ

ηG

Gϵ

commutes.

We conclude by observing that, under certain conditions, there is at most one extension
of F : C→ D to a 2-functor CZ → DZ .

4.4. Proposition. Let F : C→ D be a left adjoint with a faithful right adjoint G. Then
there is at most one extension of F to a 2-functor CZ → DZ .

Moreover, such an extension exists iff F induces a functor of isotropy quotients, i.e.
if whenever there is a 2-cell f → g, there is a 2-cell F (f)→ F (g).

Proof. We prove the first claim by showing that for any α ∈ Z(A), there is at most
one β ∈ ZDF (A) such that βFf = F (αf ) for every f : A → B in C. Indeed, assume
β, β′ ∈ ZDF (A) satisfy this condition, and consider g : F (A) → B in D. To show that
βg = β′

g, consider the unique ḡ : A→ G(B) making the triangle

F (A)

FG(B)

B

F (ḡ)

g

ϵB
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commute. Now, the constraints on β, β′ imply that βF ḡ = β′
F ḡ. As G is faithful, ϵ being

pointwise epic. Thus the square

FG(B) FG(B)

B B

ϵB

βF ḡ = β′
F ḡ

ϵB

βg

forces βg = β′
g, as desired.

We now move to the next claim: given α ∈ Z(A) we first show that there exists
β ∈ ZDF (A) such that βFf = F (αf ). For g : F (A)→ B, we define βg as the unique map
making the square

FG(B) FG(B)

B B

ϵB

F (αḡ)

ϵB

βg

Such an arrow exists since Z(ḡ)(α) defines a 2-cell idG(B) → αḡ and hence by assumption
there is a 2-cell idFG(B) → F (αḡ) so that F (αḡ) is part of some isotropy (so that such βg
indeed exists). Moreover, βg is uniquely defined by this as ϵB is epic. A straightforward
calculation shows that β as so defined defines an element of ZDF (A). We now define
σA(α) = β, whence it follows that σA defines a homomorphism ZCA→ ZDF (A). To see
that these homomorphisms are natural in A, consider the square

ZC(A) ZDF (A)

ZC(B) ZDF (B)

ZC(f)

σA

ZDF (f)

σB

and observe that sending α ∈ ZC(A) along either path results in β ∈ ZDF (B) satisfying
βFg = F (αgf ) for any g : B → C, so that by uniqueness of such β the square commutes.
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